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INTRODUCTION

The first requirement in the calculation of elastic-plastic flow is a
formulation of the equation of state. The equation of state must describe
elastic, elastic-plastic, and hydrodynamic flow. The appropriate yield
criteria must be included in the latter two regimes. The literature includes
many complicated forms of equations of state, some of which have been
developed to aid the mathematics in the analytic solution of the equations of
motion. However, since numerical techniques will be considered here, the
equations of motion are completely independent of any rheological equation of
state and any form may be used. The object of the equation of state will be
to provide a theoretical description applicable to a wide class of practical
problems, but using simple idealizations of the outstanding features of the
real phenomenon.

The problems of greatest present interest pertain to metal plasticity,
but detailed description of rate-dependent processes, for example, are still
not well enough defined experimentally. Therefore, the plastic state will be
described by continuously adjusting the stresses such that the yield strength
of the material is not exceeded. More sophisticated descriptions rna;'r' be
included as they seem indicated by experiment.

This article is arranged in three parts: Part I — Equation of State,
Part II — One-Dimensional Elastic-Plastic Flow, and Part III - Two-

Dimensional Elastic-Plastic Flow.
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PART I. EQUATIONS OF STATE

A. Elastic Region

We are only considering media which have the same material properties

in all directions (isotropic media). )

In x, y, z coordinates the state of stress in a continuous media is

defined at a given point by six stress components, o_, o_, ¢_, T, T __.
Xy z Vyz ZX

and TXy (Ref. 1, p. 14). Itis always possible to choose coordinate axes such

that the shear stresses at a given point are zero i. e. , such that Tyz =T

=T S 0 (Ref. 2, p- 215). Any three orthogonal axes such that the above

condition results are called principal axes for the point considered. The
stresses in the directions of the principal axes on surfaces normal to these
axes are called principal stresses, denoted by T1s Oy and T3

A perfectly elastic material is characterized by a linear correspondence
between stress and strain. Hooke's law is used to describe the stress at a
point resulting from a strain at this point. The strain itself results from a
force displacing particles in the media. Hooke's law in terms of an

incremental strain resulting in an incremental stress may be written as:

. _ v .

o= v ek

.V ,

¢, = v+ Zpez, (1)
.V :

oy = _\7+ Zpe3.

Here X and p are the Lamé constants, and %1 , 'ez, and "63 are the strain
rates in the direction given by the subscripts; V = volume.

The dot means a time derivative along a particle path. It must be noted
that the time derivative provides a desired ordered sequence for the incre-
mental stress-strain relationship, but this does not mean that a rate-
dependent stress-strain relationship has been introduced.3 Hooke's law used
in this way gives natural strain, which means that the strain of an element is
referred to the current configuration instead of the original configuration.

The stress behavior of a material can be thought of as being composed
of a stress associated with a uniform hydrostatic pressure (all three normal

stresses equal) plus a stress associated with the resistance of the material

to shear distortion. In describing yielding and plastic flow, we will want to
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limit only the stress contributions that are due to shear distortiens. There-
fore, we will decompose each of the stresses SEILPY and T into a hydro-
static component P and a deviator component s, where -P is the mean of

three stresses: -P = (1/3): (o, + o, + 03),

1 2
crlz—P+s1 Ul:-P+sl
= - o = - T : \
o, P+s2 also o, P+ 5, (2)
()'3:—P+s3 G'3=~P+33.

The usual notation is follcwed here such that stresses are >0 in tension and
<0 in compression, which is just the opposite for pressure; hence the
negative sign in front of the pressure. We will define the mean ncrmal strain

as.
9=](61+e +¢€.) alsc é=-;—(é1+'e

3 2T ¢ 3 &) (3)

2

The normal components of the strain deviators are defined as:

9]=€l—6 81261—6
62262—9 also 62262—6 (4)
93163—9 63:e3~6n

From the equation cf continuity we have:

e te t e T {5)

It follows that:
6] + 62 + 63 =0

and

W~
<l<-

0 =

Using the above definitions we may now write Hooke's law [Eqg. (1)] as:

Lo . 1V

®1° 2”<61 "3 V)

§, = Zp(é —l—Y—>

2 2737 6)
5. =2ufe - 1Y

S37 M3 737

: \ _ 2\ _

P=- K“f K = (X +'—3~}L = bulk modulus.
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Also from equations 5 and 6, it follows that:

SI+SZ+S3=0 | (7)

and

(8) )

1]
o

SI+SZ+S3

which says that the distortion components of the stresses do not contribute to

the average pressure.

B. Plastic Flow Region

The yield condition of R. Von Mises is used to describe the elastic
limit (see Ref. 4 for an English translation of the Von Mises paper). When

the principal stresses are known, the yield condition can be written as:

(@, -0,)% + (o 2 2= 2(v%* (9)

1 2)
where v0is the yield strength in simple tension.

The left side of this expression is proportional to the elastic energy of

2 =03 oy -oy)

distortion per unit volume or the energy required to change shape as opposed
to the energy that causes a Yolume change (Ref. 5, p. 210). The expression
states, therefore, that plastic flow begins when the elastic distortion energy
reaches a limiting value [(YO)Z/()H] and that this energy remains constant
during the plastic flow. Thus, by the term "elastic-plastic'' is meant the
state whereby the distortion (change in shape) component of the strained
material has been loaded, following Hooke's law, up to a state where the
material can no longer store elastic energy. All subsequent distortion will
produce plastic flow and plastic work will be done. The left side of Eq. (9)
can also be interpreted in terms of shear strength. There are several ways
of viewing Eqg. (9), but the point here is that at the elastic limit the left side

is equal to a constant. We have chosen to interpret the constant in terms of

the yield strength in simple tension YOG If the tension is applied in the Ty
directioon and the lateral stresses o, and o, are zero, then Eq. (9) gives
oy = Y . The simple tension implies two-dimensional flow since in order .
for the lateral stresses to be zero there must be strains in the lateral

directions. In fact the ratio éz/'e] for this case is Poisson's ratio, also, it

is noted that Eq. (9) implies that the yield strength in tension is the same as

the yield strength in compression (absence of Bauschinger effect).
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In oys 0,, 0, space, Eq. (9) describes the surface of a straight
circular cylinder. The axis of the cylinder is equally inclined to the Ty Ty

o, system of coordinates as shown in Fig. la. The radius of the cylinder is

\/3275 YO. We are going to use the principal stress deviators such that

sl+ s, + S3 = 0 [see Eq. (8)]. This is the equation of a plane through the
origin of the axes of the principal stresses. The intersection of this plane
with the cylinder of Eq. (9) results in a circle (see Fig. la). If the stress
deviators Sy» 8,5 S3 give a point inside the circle, the material is within the
elastic limit.

When the material is loaded beyond the yield strength and subsequently
unloaded, only the elastic distortion energy is recovered. The work done
against the material while in the plastic state is not recovered. Another way
of stating this is that the loading and unloading paths are not the same when
the material has been loaded beyond the elastic limit (in Fig. 2a the loading
path is OAB, the unloading path is BC). It has been demonstrated by D. C.
Drucker6 that: The work done on the material during a loading and unloading
cycle must be positive or zero; zero only when purely elastic changes take
place. Furthermore, the plastic strain increment must be normal to the
yield surface that separates the elastic and the elastic-plastic states. We
will describe plastic flow by maintaining the stress deviators (sl s Sy 53) at
the elastic limit. In Fig. 1b the stresses are shown at state n and after an
incremental strain we will consider that the stresses have changed to state
n+ 1. However, state n + 1 is outside the yield circle and our assumption is
that this state can not be reached. Instead, we will consider that the
material flows plastically, but the stresses remain at the elastic limit on the
yield circle. The plastic component of strain is perpendicular to the yield
curve and it is the stress associated with this component of strain that we
want to limit. Therefore, the new stress state, instead of being n + 1, is the
point that is reached by a vector from n + 1 and perpendicular to the yield
circle. The one-dimensional analogy is seen in Fig. 2b where the stress,
=S has a maximum value for all strains beyond the elastic limit point A.
Thus, to summarize the yield assumption:

(s1 - 52)2 + (s2 - s3)2 + (53 - sl)2 < 2(Y0)2 (10)

sl+sz+s3=0
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YIELD CIRCLE

.

GLB-637-4418

o YIELD CIRCLE :

GLL-637-1666

Von Mises yield assumption.
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-s, COMPRESSION
A a B 62 = 0
, | €;=0
\ y\\,7c _ 3 |
— 3 S2 +5%+85= = (Y9)?
TENSION SLOPE Z p 3

(a)

P =P (V)

2
1o SLOPE K=(A+—=p)
3 v 3
€ -
(b) 2 0
-3-Y
-0 ‘e P
| OR Vo by,
3 ~SLOPE (A+2p)
YO €
|
(C ) GLIL-637-1667

Fig. 2. One-dimensional strain for a perfectly plastic material.
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which can be written as:

24 so sl <2/3 (v%)? (11)

If an incremental change in the stresses in an element results in a
violation of the inequality, then each of the principal stress deviators -
(s], S, s3) must be adjusted such that Eq. (11) is again satisfied. Hooke's |
law is used to calculate the stress deviators [Eq. (6)]. If a point falls out-
side the yield circle (Fig. 1b) it is brought back to the circle along the radius
vector of the point and hence perpendicular to the yield circle. This is
accomplished by multiplying each of the stress deviators (sl EPY s3) by
\/2—/; Y0 \/s?“l' s2 + sz., By adjusting the stresses perpendicular to the yield

2 3
circle, only the plastic components of the stresses are affected. The observed

incompressibility of the plastic state is implicit in this procedure. Note that
there is always a background pressure stress present, whether the material
is in an elastic or an elastic-plastic state, but it is independent of the plastic
flow. This is in agreement with the observed behavior of ductile metals.
The above formulation corresponds to a perfectly plastic material, i.e.,
material that flows plastically under a constant stress without work-hardening
(see Fig. 2). For a work-hardening material the stress (-s]) will increase
monotonically with strain (el) for strains beyond point A instead of remaining
constant as for the perfectly plastic material shown. Work hardening can be
introduced into the calculation by making the constant Y0 in Eq. (9) a function
of the strain energy, for example. Also, when enough work has been done to
melt the material, the value of YO can be set to zero. In this way an all-
hydrodynamic description will follow since the stress deviators will
automatically be set to zero by the above procedure and the only remaining
stress will be the pressure P Time-dependent yielding can be macroscopically
represented by selecting a high yield constant vY if the strain rates (%1 s éz,
'e3) are above some prescribed value. .
In the negative pressure region, the pressure is cut off at P = - (1/3)YO

consistent with a simple tension test.
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The complete equation of state is given by:

- - -
B o AV] ey 2, .2, 2202
o‘l~-P+s] 51—2“[61-3V. (iii) sl+sz+s3_<_3(Y)
(){(eo,=-P+ts (ii) ( s =Z}L[é ——l——Y (iv) s, +s,+s,=0

2 2 2 2 " 3V] 1827 83

c.=-P+s 5 =2}L[é _1 Y (v) P =P(V) (12)

73 3 3 3737 Lo

(vi) Minimum P = —§-Y

C. Experimental Equation of State

Consider a one-dimensional shock traversing a material such that there
is a strain in the X direction and zero strains in the ¥ and Z directions.
This is the geometry whereby Hugoniot equation-of-state data are obtained.
A shock exists that takes the material through an elastic to an elastic-plastic
state.

For one-dimensional flow, the X, Y, Z coordinates are the principal

directions, so by Eqgs. (6) the three stress deviators S » S, 8, are:

oule 1Y
x—px 3V

0.
!

. 1V
. 1V
SZ—Z}L(O —g—v—').

The total stress in the X direction is:

o'x =-P+ SX. (14)

We will assume it is T that is obtained by Hugoniot measurements.

x/ X-X
-X - Hugoniot
x”

A - Hugoniot elastic limit

o/p° = 1/V

reference density

o
R
el
N\
1

actual density

o
1

Fig. 3
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For 1-D flow the equation of continuity gives 'ex = V/V The complete

equation of state for one-dimensional geometry is described by:

(1) o =-P+s (iv) s +2s =0
X x , x v
. v oy _
S, = Z}L[-\—/: - g—v} (v) P = P(V)
(ii) :
'sy = Zp{— %—%] (vi) Minimum P = - %YO. (15)
2 2 2 0,2
(iii) (sx + Zsy> <3 (Y™
Up to the elastic limit, point A, we have:
P K%- and 5 = 2 [V/V -(1/3 V/V]
or
P=-KInV and s =(4/3)p InV=-2s (16)
szKan+§-pan
= <K + :4-1\911’1 V.
3
At point A: ‘
2 2\ _ 2 ,0\2
(S * Zsy)A 3 (Y7)
or
2 _ 2 0,2
(24/9)(p In V)" =5 (Y")

2
v = 2p | V| SNt 2p

This gives the maximum yield strength YO if the Lamé constants and the

Hugoniot elastic limit are known.

. r2 2\ _ 2 (0,2
For points beyond A we have: (sx + Zsy) =3 (Y")
which reduces to:
s = * %—YO [from (iv) Eq. (15)], (18)

[if the material yields in tension, s_ >0, in

compression, s_ <0 (YO is always >0)]
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so the total stress resulting from a shock from o= 0 to a value above point
A is:
_ 2 ;0
o =P(V) + 2 (Y) (19)

P(V) can be expressed conveniently as:
2 3
P(n)=a(n-1)+bln-1)"+c(n-1)". (20)

Here a, b, and ¢ are constants such that P(n) + (2/3)Y0 reproduces the

Hugoniot for shocks above the elastic limit and P(n) = -Kln V for pressures

below the elastic limit.

A B 47'_'G-x
-Gx P(ﬂ)
or (2/3) YO
o (o
o 2/3) Y°
0 D n- 1 >

The result of using an equation of state as given by Eqgs. (15) is a loading

path O, A, B (Fig. 4) and an unloading path B, C, D. Experiments on metals
in the low-pressure range (0 — 50 kb) have demonstrated the difference
between the hydrostatic P(n) and the Hugoniot (o‘x) curves. At high pressures
(hundreds of kilobars) for some metals the sound speed behind the shock has
been measured to be of the order of 20% faster than that predicted by hydro-
dynamic theory. This gives reason to extend the low-pressure model up to
high pressures. Upon unloading from a high pressure, the material unloads
first elastically along BC; the slope of this path is characteristic of the
elastic unloading velocity. Consequently, the rarefaction travels faster than

would be the case if the material unloaded entirely along the P(n) path.
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Experiments that have measured high sound speed behind shocks in metals

have been performed in Russia,8 Stanford Research Institute, and at this

Laboratory.
Using Hugoniot data of J. M. Wa.lsh9 and the elastic data of C. D.

Lundergan,lo the constants for Eqs. (12) for aluminum are:

YO = 0.002976 mb (from Eq. (17) with (o‘x)A
p=0.248 mb = 0.0063 mb and VA = 0.994)
P=0.73(n- 1)+ 1.72 (n - )° +0.40 (4 - 1)°

pO = 2.7.

Figures 5 and 6 show the results of finite difference calculations of a
flying aluminum plate striking a target plate. The calculation shows that
even though the yield strength Y0 is small compared to the total stress L
the effect on the wave is very pronounced.

In principle, calculations of this type in conjunction with experiments
could be used in determining the properties of materials at high pressure
based on the model described by Eqgs. (12). Front-surface velocity measure-
ments for various thicknesses of target plates could determine when the
elastic wave overtakes the shock front (see Fig. 6) and this would establish
the slope of BC in Fig. 4. The magnitude of the step behind the shock in
Fig. 6 would correspond to point C of Fig. 4.

If the material behaves entirely hydrodynamically, then the step behind
the shock front will not be present. In Fig. 5 it is seen that the rarefaction
due to the hydrodynamic unloading is proceeding much slower than the elastic
unloading. The hydrodynamic rarefaction however, can be seen to be over-
taking the shock front from the increase in the slant of the rear of the wave
as time increases.

It should be noted that to account for high sound speeds behind a shock
it is only necessary to postulate that the material unloads first elastically
and then plastically. The result would still follow even though at high
pressures the - o curve merged with the P(n) curve. We have maintained -
the values of YO and p constant in these calculations since the details of the

elastic unloading from high pressures are not known.
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PART II. ONE-DIMENSIONAL ELASTIC-PLASTIC FLOW

For time-dependent flow in one space variable (r), the principal
equations for plane (d = 1), cylindrical (d = 2), and spherical (d = 3)

geometries are:

equation of motion

0fJ 6Zr Zr - Ze
'E-'—V = ar + (d - ]) -—-———r (21)

Zr: -(P+ q)+ )

Ze: —(P+q)+s2

equation of continuity

v_ 1 arlu (22)
v d-1 or
r
energy equation
E—V[sl'el+(d—l)szé2]+(P+q)V=0 (23)
artificial viscosity (linear q)
0
q-= CO %—7— (%——E) Ar C0 = constant (24)
equation of state
(o =opfe, 1Y
S17eM&1 T3V
anisotropic _ . _l_X
stresses 52 ° 2H<€2 "3 V) (25)
opfe, LY
$3 7 M3 737
-

NOTE: Three stresses are identified here, even though they are
not all required, so as to maintain an analogy with the
two-dimensional calculations in Part IIL

(. .U
1~ Br
. .U
2 r
velocity <
strains é3='e2ford=3
é3:0ford=2

¢, = 0ford-=1

M
il
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hydrostatic pressure

P=a(n-1)+b(n- ])2+C(T]- 1)3+d1’lE

_1l_oe
M=V ~70
p
Von Mises yield condition
+
(s? + sg + sg)n L (2/3)(Y0)2 <0 Y0 = material strength
Notation:
T space coordinate
8] velocity in r direction
=, Z total stresses
r 0
Sy» 8,5 84 stress deviators
el, 52, 53 strains
P hydrostatic pressure
v relative volume
po reference density
p actual density
E internal energy per original volume

The dot over a parameter signifies a time derivative along the

particle path.

Application

The finite difference equations for the above set of partial differential
equations are given in Appendix A.

Figure 5 shows a calculation in plane geometry (d = 1) of a flying plate
coming from the left with a velocity U = 0.08 cm/psec and striking a target at
rest. The materials are aluminum, with the constants given in Part I. At
this impact velocity the elastic signal travels faster than the shock speed and
the shock breaks into two components. In Fig. 6 the same problem has been
calculated with a higher impact velocity (0.2 cm/psec). In this case the shock
speed is greater than the elastic signal speed and the shock front is the same
as though the material were following an all hydrodynamic descriptions.

However, it can be seen that the elastic relief wave that originated from the

rear of the flying plate is overtaking the shock front.
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Figure 7 shows the stress waves resulting from a 1-cm-radius
spherical charge of high explosive (comp. B) detonated at the center. H The
region from 1 cm to 5 cm is treated as an elastic material with P = K(n - 1),
K=1.39 mb, po = 8.9, p = 0.46 mb, and YO = oo The stress waves are
traveling at a velocity C = [(K + % p)/po] 1/2 cm/psec. A second shock can be
seen that has originated from the high-explosive caLvity.l

The second shock is a hydrodynamic effect and is not a result of the
elastic property of the material. The radial stress is seen to be followed by
a tension tail of about -10 kb. The tensior is due entirely to the elastic
property of the material. If the material were described by hydrodynamics
alone, there would not be a tension portion behind the outward-travelling

pressure stress wave.
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PART III. TWO-DIMENSIONAL ELASTIC-PLASTIC FLOW

The equations of motion listed below are those used by the HEMP code,
a program that solves the equations by finite difference techniques on the
IBM 7030 electronic computer. The derivation of the equations can be found
in Ref. 13. The problem is formulated in Lagrange coordinates with sliding
interfaces allowed between an elastic and a hydrodynamic region or between
two hydrodynamic regions, but not between two elastic regions. However,
an elastic region may slide along a fixed boundary. The equation of state is
used in the same manner as described in the preceeding sections. There is,
however, the additional complication that the stress-strain relationship must
be independent of a rigid motion and hence the incremental stress-strain
relationship must be corrected for a rotation in the x-y coordinate system
(Ref. 14). When a zone is displaced from an initial state of stress, there
may be a rotation through an angle w as well as a distortion. The rotation
will not contribute to an increase in stress, but the state of stress

n o Ti}) originally in the zone has been rotated through the angle w.

xx’ °yy’
Since the equations of motion are referred to the fixed x~y coordinate system,
the rotated stresses must be recalculated in terms of the coordinate system.

The transformation equations (Ref. 5, p. 110) result in a correction & that is
added to the stresses. The stresses can then be incremented by the strain
that occurred between time t" and time tn+l to give the stresses at time tn+1.

The rotation angle is given by:

oL (a3 k) gt/
sin w =5 <8x-8y> At .

It is not practical to increment the stresses in the principal stress
coordinate system because the principal stress directions are not unique and
also there can be large changes in directions between two consecutive time
steps. Therefore, the operation of transforming to the principal stress
coordinate system and then back to the x-y coordinate system every cycle
would become complicated and inaccurate. Even though the program to be
described does make the transformation to the principal stress system to
test for yielding, the directions of the principal stresses are not required in
the calculations and the complications involving these directions is avoided.
(The Von Mises yield condition can be used without reference to the principal
stresses (see Appendix B 7-b}, however, the geometrical interpretation of the

yielding is easier if the principal stress deviators are used instead of the

stress deviators.)
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A. Basic Equations in the HEMP Code

Equations of motion in x-y coordinates with cylindrical symmetry about

the x-axis (it is desirable to have the problem formulated also in plane x-y

coordinates; for this case the terms marked * are set = 0):
3EXX E)TXy TXy *
ax dy ¥ y - px
0T 02 Z - %
Xy p_ ¥y, .yy 081 g

ox oy y ?
Zx = Sux " (BT (26)
2 =38 - (P + q),

yy Yy ( 2
Zii)e = Sgg ~ (P + q).

Equation of continuity:

V_2% 08y ,§¥

V ox o9y vy

ot
=

(27)

Energy equation:

E=-(P+q)V+ V<Sxx€xx + SS’YEYY + S00 599 + Txyexy> . (28)

Artificial viscosity: (quadratic '"g'")

2 0,: 2
q=Cy e (V/V)"A/V (29)
where
CO = constant
A = zone area
pO = reference density.

Equation of state:

. 7 1 \°f>
Sxx 2H<€XX "3V + 6xx’
s =2p(e _%-@m , (30)
stress vy yy ~ 3% Yy
components < >ul’ ll)
Sep ~ M0 "3V
TXY = p.(exy) + 6xy’
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where
p = shear modulus
§ = correction for rotation (see text).
S 4
5 =L
velocity = x 00y
strains . .
¢ =9y, -9y, 9

Hydrostatic pressure

a(n - 1) + b(n - l)2 + c(n - l)3 + dnE,
0

1V = p/p .

Von Mises yield condition

(slz + 522 + 532) - 2/3%?% <o

P

M

where
YO = material strength

(sl ' Sy 53) are the principal stress deviators.

Notation:
X,y space coordinates
x velocity in x direction
v velocity in y direction
Z’XX,Zyy,Z‘ee total stresses
Txy shear stress
sxx’syy’see stress deviators
sxx’ Eyy s 666 , exy strains
P hydrostatic pressure
\' relative volume
E internal energy per original volume
P density

UCRL-7322

(31)

(32)

(33)

The dot over a parameter signifies a time derivative along the particle path.
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B. Finite Difference Scheme

The following integral definitions of the partial derivatives are us ed

(see p. 327, Ref. 15):

S F - YHas
aF _ C .
% ~ Tm A (34)

A0

g_g lim A (35)
A0 Y‘
where t
C is the boundary of area A
S = arc length
A = normal vector A
% = tangent vector. P x
ho2xdy2va Byt Bxd (56)

Applying the above to the quadrilateral 1, 2, 3. 4, we have for a parameter

F defined at the points 1, 2, 3, and 4:

y A . 5
IDZ A = area of quadrilaterial
—P X

XF(ﬁ . hds = + §F % das (37)

- [F23(V2 - y3) F Fylyg my ) H Fylyy -y Fply - Yz)] (38)
where F23 = (F2 + F3)/2, etc.

aF 1

So5x " " A [F23(Y2 = yg) F Fyulys - v) H Fylyy - vp) + Fpoly - Vz)] (39)

ox

=+ 3 [F, - P - ) - g - U - )]
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Similarly
9F _ 1 |\p _p _ F -F
ay " 2A {( 2 = Fgdlxg = xp) - Gy - x ) (Fy - 1)] ‘ (40)

The quantities 8F/9x and 8F/dy are considered to be defined at the center of
the quadrilateral.

Using the above difference equations we can now write an expression
for 8%/9x and 8y/dy at a given time and position. The difference scheme
to be used defines the velocities (X and y) at 1/2 time increments and the
space quantities (x and y) at integral time increments.

If we use the definitions:

Xn+l/2 - 1/2 (Xn+l +

xn)

, etc.

and

'n+l/2 ntl

A

A"

=1/2 (A

+ . . . +
where A™ and A” s area of the quadrilateral at time t" and time t" l,

respectively, then the difference equations will give:
—g—z + %X exactly —j:— (continuity equation in plane x-y (41)
V== # geometry where A/A = V/V).
It is obviously very desirable that a difference scheme have this
property since it leads to zero truncation error in the numerical integration
of each of the terms in Eq. (41).

We will now consider the continuity equation in x, y coordinates with

cylindrical symmetry about the x axis.
ENA A
[-8-— + } ti=g (42)

Here V is the volume swept out when the area A is rotated about the x axis.

V = ;aA,a + ;bA.b

Y‘ 4 3
A’a = area of Aa A.=A.a+A.b .
A.b = area of Ab 1 2
¥, =1/3(y, ty.ty,)
a 2 3 4 (43)
Yb = ]/3 (Y2+Y4+Y1) m
. P X
Y, =

1/3 (v, V547, (‘/
axis of cylindrical symmetry

137, +,+¥))

fi
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A very good approximation for the third term, v/y, of Eq. (42) is given

nt1/2. nt1/2.

y_ B2 TVt TN

y ntl/2 _n+1/2 n+l/2_n+l1/2
ATy + Ay / 7o

(44)

It is important to recognize that the difference equations for the terms
in brackets in Eq. (42) are the same as for the left side of Eq. (41 i. e.,
they are independent of the coordinate system. Since there is essentially
zero truncation error with the integration of these terms, it is possible to

calculate V/V from the coordinates and express y/y as:
y.¥_|8%,8
vV [8x Yoyl (45)
For the acceleration routines, the given parameter F in Egs. (34) and

(35) is defined at the center of a quadrilateral. The area enclosed in the

integration is the area I, II, III, IV in the figure below.

y A 11T

IV® 0 I

o | ®

P X

A
The corresponding difference equations for the 1 and'fj\ components of

acceleration become:

SF(ﬁ * ,i\) ds = - [F®(YII - YIII) + F@(YIII - YIV) + F@(YIV - YI) + F@(YI - YII)] >
(46)

S F(d - J)ds =+ [F(D(XII - xpp) + Fgylxqpp - xqy) F Eglxpy - X F Fglxg - )] - ’
(47)

The area I, II, III, IV is considered to be the mean of the quadrilaterai
areas A®, A®, A®, and A@. As can be seen in Appendix B, the quadrilaterals

are weighted by the four corresponding densities.
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C. Applications

The complete set of difference equations, including sliding interfaces
and boundary conditions, is given in Appendix B. In the following figures,
applications of these equations to specific problems are shown. The plots
were made directly from the high-speed computer by a cathode ray tube and
then photographed. Zones are shaded with an intensity weighted by the rate
of zone compression. Hence, the shocks or detonation fronts are traced on
the grid.

Figure 8 shows the time sequence of events due to a charge of explosive
detonated at constant volume against a plate of copper. The horizontal line
through the middle of the grid is an axis of cylindrical symmetry. The
equation of state for the copper was derived in the same manner as previously
discussed for aluminum. The yield strength used was YO = 10 kb and shear
modulus p = 460 kb.

Figure 9 shows the directions of the maximum principal stresses for
the above problem. The maximum principal stress with the sign convention
being used is the tension component of the stresses. Therefore, the line
segments point in a direction normal to the direction of an incident shock.

By examining the plots, the progress of rarefactions from the free surfaces
can be followed since the lines point in the direction of tensions.

Figure 10 shows the same problem, but the copper is described by a
hydrodynamic equation of state with no strength of materials. It can be seen
that the crater is much deeper than in the preceding problem. The crater lip
is seen to increase with time. With a hydrodynamic description there are no
restoring forces if the material deforms at constant volume. The elastic-
plastic description gives rise to restoring forces that resist a change in shape
even though the volume remains constant, and hence nc lip is formed for the
problem shown in Fig. 8. A lip will form, however, for calculations made
with yield strengths of 1 to 2 kilobars.

Figures 11 and 12 show the time sequence of stresses in a copper plate
resulting from the interactions of detonation fronts in a high explosive (PBX
9404). The calculation was made in plane geometry and the detonation centers
are lines perpendicular to the page on the right- and left-hand lower corners.
The left_ and right-hand boundaries are planes of symmetry. The copper has

a yield strength Y0 = 10 kb in this calculation.
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COPPER
YIELD STRENGTH

v%:= 10 kb F
SHOCK e

T D

4cm
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1
i
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|-———I2.5cm

5
|—‘ cm—»l t=4.0;/sec

t= 30//sec

t=40ysec t=50ysec QL1 -639-2182

Fig. 8. High-explosive burned at constant volume in contact with a

copper plate.
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Direction of the maximum principal stress (see Fig. 8).
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Fig. 10. Initial geometry as in Fig. 8, but with no strength of material
in the copper.
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The interaction of the two detonation fronts results in the trailing
shocks with high localized pressures in the region of the cusp. The
detonation front can be seen to transmit a shock into the copper and reflect a
shock into the high explosive. The trailing shocks induce a circular shock
that sweeps from the left and right of the line of interaction. This shock can
be seen to punch out the center of the copper. In the last frames the reflection
of the trailing shock from the fixed boundaries can be seen. The dark shading
where the reflected shock from the copper meets the trailing shocks indicate
a high-pressure region.

Figure 13 shows the directions of the maximum principal stresses in
the copper for the above problem. The expanding circular shock due to the
trailing shocks can be seen to be progressing through the already shocked
copper.

Figure 14 shows a comparison of the above problem with a calculation
made with no material strength in the copper. This calculation indicates a
low density region along the front surface as well as in the large circular
section in the middle.

Figure 15 shows the explosion of an iron cylinder that had a charge of
PBX 9404 inside that was detonated from the right-hand surface. On the left,
the iron cylinder motion has been calculated with no strength of material and
on the right, the motion was calculated with a yield strength Y0 = 10 kb.
Comparing the two calculations, it can be seen that the elastic-plastic version
shows the thickness of the iron to be slightly dilated. Also, the end of the
cylinder has maintained more of its original shape compared to the hydro-

dynamic version.
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Fig. 14. Comparison at 6 ps with and without material strength.
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APPENDIX A

FINITE DIFFERENCE EQUATIONS FOR THE EQUATIONS
GIVEN IN PART II

The material is divided into mass intervals:

0 Ct‘o+l d_ <ro>d plane: d
0 J 3 J cylinderical: d
v spherical: d

i un
W N =

M1/ T
j=1,2,...N (see Ref. 16).

1. Equation of motion

n+1/2 _ n-]/2 At? n n n{,n
j = Uj +?¢—n— <Zr>j+1/2 - <Zr>j—1/2 + At <§Sj> (d -1

(a) U

it1/2 j-1/2
n n
gn_ 1 Elie - Ciipl v
J 2 %(r?_ﬂ + r?) pO j+1/2

n n
N E)i1 - Ei1 <Vn>
. @n ¥ r?_D i-1/2
At an outside regional boundary J
n n
n_ 0 R A
LA BV 2
J-1/2
n n
oo - E)5-12 - Eoiap V" .
ETCEES -1/z

Po
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At an inside regional boundary J

outside
noo_.n boundar -
o2 =10 g1~ g e =,
3 " 2Par1/2 \Tgm
J+1/2
n n
81 = (Zr)J+]/2 - (29) J+1/2 (\_fi) inside increasing
J - 1 P " bounda J
> <J + r”b 0/7+1/2 undary

For a free surface at j = J, the stresses are set to zero at J + 1/2 for an
outside free surface or J - 1/2 for an inside free surface. The zones

adjacent to an elastic region are considered to be hydrodynamic.

n+1/2 n+1/2

rn-i- 1 n UJ

(b) j T

2. Egquation of continuity

o _
ntl n+1/2 (o nt1/2 [ n+1/2\ d
@  Vip T Vi At <m>j+l/2 [Uj+l <J+1

Un+]>2 nt1/2\d-1 /n+1/2
- j r \_]-1-1/2

n+l 1 n+1/2 _ 1 [ n+l n
(b) N+1/2 = n¥l here r, " = <J+1 J+1>
j+1/2
/Z 2 +1/2
<X- >"‘: <L]1:1+]/2>3
j+1/2 iz 3+1 _ j

3. Anisotropic stresses

- n+1/2 n+1/2

: nt1/2 _ UJ+1 ) Uj
1)j+1/2 = nfi/z nfl/z

velocity J+l J
strains ntl/2  nt+1/2

. >n+l/2 Uiy T

2)j+1/2 =~ " n¥1f2 " n¥l/2
T+l B

éZ:O for d =1

“Correction term for d = 3 only
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r
ntl _ n . n+1/2 n+]/2
(Sl>j+1/2 = (Sl>j+1/2 * Z“Kﬁ)jﬂ/z At
) l<Vn+l _ Vn) ]
3\ v 12 )iy

stress '
. ntl _ n . \n+1/2 n+]/2
deviators (52>j+1/2 - <52>j+1/2 ¥ 2*‘[(*2)3'“/2 At

53 ;1:11/2" Sl?:11/2+ 52 ;1:11/2 '
e[l (i)

4. Artificial viscosity

ntl/2 .0 n+1/2| . nt+1/2 n+1/2 , .. .ntl/2 nt+1/2
qj+]/2 =C" a Po nj+l/2 l 41 - Uj calculate only if: Uj+1 <Uj

0 _ . .yt ym
C" = constant = 1/2 and: <Vj+l/2 Vj+l/2 <0,

local sound speed

2

5. Energy equation

= + dE
dE dEH+dEl ; dEZ

dEy = - (P +q) 4V

dEl =V s]elAt

= € {d-
dEZ A% szezAt (d-1)

ntl n n+1/2 n+1/2 . n+1/2 n+1/2
(a) (El>j+l/2 = <E1>j+1/2 T Vii/2 <81>j+]/2 (€l>j+1/2 At

n+1 n n+1/2 nt1/2 (. \nt1/2 , n+1/2
(b) <E2)j+1/2 - (E2>j+1/2 =NV <Sz>j+1/2 <62)j+l/2 At

n+1, n _
w1 (g7 _,[A(q )+ P, qn+l/2]ﬂ[vn+l ) Vn]+ dE. + dE]
(©) {Blir12 = 2 : : '
n+l
FEAEN R R 07
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6. Hydrostatic pressure
ntl _ ntl ntl ntl i
Pir1/2 © A<”j+1/z) * B<13+1/z) B/
7. Von Mises yield condition

(s? + sg + sg)nJrl -2/3 (YO)2 = Kn+l

+ . . el s . ..
If K I < 0, the material element is within the elastic limit.

If Kn-H >0, the material element is beyond the elastic limit.

ntl _ ntl <0 [ 2 2 2

8 =8 |/2/3 Y/ lersers3

Set: 5

: ntl _ ntl 0/ /2 2 2
S5 =8, /2/3 Y/ lersz+s3 .

8. Stability

n+1 nt+1l
o o nt3/2 >(lol)Atn+1/2

tn+3/2 =_;_ +1 32 If: At
a +b . .
min. over j

n+3/2 _ (Ll)mnﬂ/z

A

a = sound speed Use: At
b = (ZCO)%[; ;b=0 if%;—z 0 PN _;_(Atn+3/2 N Atn+l/2)

This is a composite of the stability criteria given in the Von Neumann and
Richtmyer paper that introduced the 'q'' method for calculating shocks
(J. Appl. Phys. 21, March 1950).
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APPENDIX B

FINITE DIFFERENCE EQUATIONS FOR THE EQUATIONS
GIVEN IN PART I

1. Mass zoning for cylindrical symmetry about the x-axis.
The material is divided into quadrilaterals with a grid j-k that moves

with the material. In the figure, the centers and the vertices of the quadri-

laterals will be denoted as follows: A 4 3 Kt 1

o ] L=k y a
O=j+5 kt3 =Js ) b(D

1 1 . k
@=j-35 k+3 2=j+ 1,k 1 2
€ @

= ...l —..]:- =3 k-1
®=]j 5 kK-> =j+ 1,k+1

P B | _ . i-1 j 1
@_J+2,k > 4 =i,k+1 > x

The mass at time zero associated with each quadrilateral is obtained by
the product of the initial density and the volume swept out by the quadrilateral
rotated about the x-axes. For example, the mass at time zero for quadri-

lateral @) is calculated as follows:

0
1/p 0 0 0 0 0 0 0 0
(a) M :_<__._> [(y ty, +vy )A +<y ty, +vy )A] 5
O 3 VO 2 3 4 a 1 2 4 b 0

masses Ma , M., and M . are calculated similarly.
(@) ©) @ Y

Aa = area of Aa; Ab = area of Ab:
FA n 1 g n_ _n + n n _ n X n n _ n
a)p T2z \Us Y4 )" F3 Va4 TV2 )7 % U2 Y3 )]
b n _i n n _ n n n _ n n n n
( )<(Ab)@ = z["z (Y4 V1)+ *4 (Yl Yz) X (Vz Y4):] '

A0 (B ()

2. Conservation of mass

0
n_1(p" n n n n n n n n
V®”3<M>®[(Vz RE +Y4)Aa +(V1 R +Y4)Ab]®

V(-B = (po/pn)@v

1
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3. Equations of motion

The equations are centered at v A 1T k+1
point j, k; see figure for notation. @ € -
I =jk-1 Iv k
II =j+ 1,k ® @
= 3 ‘ k-1
I = j,k + 1 j-1 jI 1
IV =j- 1, k. :
B x
.n+1/2 _ .n- 1/2 ath n T n n n n
@) X T Nk “_Zd)n (Zxx>® 1 - V) P o Yir ~ Viv
j.k

oy R O (IR A CHEE

. n n n n n n n n n n n
; <T xy>® (Xm - XIV) ”(Txy> <XIV e )‘ (Txy) (Xz - XII)?’+ At (adj

‘n+1/2  .n-1/2 Ath . \n/ n n n
e S Zyy)Q *r ¥t Zyy@) X171
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. +
(d) x;thl = x;l X + x?+1<1/2 N 1/2,
ntl _ n .r_1+1/2 Atn+l/2°

Vik Yk Yik
(e) Calculate Vn+l from Eq. (2) (conservation of mass).

(f) Calculate qrgl/z from the equation of state section.

4. Equaticn of state A 4 3
a
(A) Strains y 0
n+l/2 1 [{,ntl n
A@ =5 <A® + A@> . }
A\ntl/2 —
(i) ('exx)n®+1/2 = %2)@ = -ZA—nl*'UZ K}ZZ - 5<4)(y3 - Yl) _ (YZ _ Y4)(5(3 _ kl)]n-i'l/z'
()
. n+l/2
(ii) (éyy)gl/z - %)@ - _~—7_2A;‘Jl” =[5, - 0y - 1) - Gy - x5 - ir])]n+]/2.
[©)
Ant1/2
(iii) (éee)nﬂ/z = (X) - [.\‘; Sk 4 )]
Yy ) XX vy 0
(v) )n+l/2 _ (o5, ax n+1/2
Xy ) 9x Oy @

- {5 - 9005 -y - b 65 - 9]

- [(5‘2 - By g - xg) - (xy - xR - Xlﬂ} utl/f2,

(v) <AE >n+1/2: (e >n+l/2 Atn+1/2
XX X% (@)

nt1/2 _ < >n+l/2 Atn+1/2
vy

/['>\
m
D
\C.i{ SN—
-+
Ny
1}
TmeS me
a
N—
]
+
|
N
>
o+
s
+
bt
Ny
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where

nt1/2 1 (. n+l
= = + )
‘o T2 (V@) V@)
(B) Stresses

1. Elastic

(i) <s )n+l <
XX@
(ii) (s nH <S )7t 2u|Ae :
<”Y>® o |
[ nt1/2°
(i) Gee)(r;l i} %ee)é* 2p LAEIeTgl/Z ’%(év_
(iv) <r_>n“ - <r )H+H<€n+l/2> A )
XY@ Xy® @ xy

See Section 6 for the calculation of &

, 6 , and 6 After the
n+1 =Y
stresses at time t' ° are calculated, the yield calculatlons are meade (see
Section 7).
2. Hydrodynamic

ntl _ n+tI1} | ntl ntl
P® —A,<V®)+B<V®)o E® .

E(D is calculated from the total internal energy equation, Section 5
3. Artificial viscosity

ntl

c2 0 n+1/2

A >\ 2
.\ . nt+1/2 _|~0P VAN
(i) guadratic g: q_® = Vn'i'l/Z <V>
)
2 _
CO = 4.

Calculate only for V/V <0.

0/ nt1/2
(ii) linear qg: nt1/2 aCLp & v
. q- q ' Vn-i—l/Z \2

@

1L constant.

©

Calculate only for V/V <0.

sound speed.

j )
1]




_B-5- UCRL-7322

/ n+l/2
n+l/7 _ 1{

(xx —; n+l/2 XXJCD’

/ n+l;2
(iii) anisotropic q: < 4 n+1/2 _
(YY 0 i n+1/2 yy| @
C, = constant.
L A

If these terms are used, they are added to the appropriate stresses,
i.e., (s + and (s + . It is useful to have the g formulated in

(5. ¥ i) 2nd {5y T qy ) 4 !
this way for problems where a shock is travelling perpendicular to a free
surface. However, for the average problem the quadratic q gives very

satisfactory results and it is this q that is expressed in the equations written

here.
4. Total stresses /
. Tn+l _ Tn+1 [_n+1 nt+1/2]
(1) _ZXX‘ @ - [SXX_ @ - -P + q -®.
.y | Intl [ Tn+tl  [on+l n+1/2]
> = - |P + .
R ) *yyl® 7L d o)
T S F S Tntl  [on+l n+1/2]
(iii) :ZGG_ O " [ 00 @D _P _ + q o

5. Energy equations
(i) total internal:

n+l

n

o [Er- [A(V : )+ P qn+l/2:| Cowm vy Azntl/2
E =

) n+1

B(V ) n+1 n
1+ — (V -V O
(ii) anisotropic: Zr&g] = Zn®+ V%l/z . {SXXGXX + syyeyy
n+1/2

569€99+ xyexy 0)

n+l/2: ntl n n+l/2: n+l

AZ Z - Z s (s + sn), etc.

oo —

. . . . +
6. Correction for rotation of stresses during a time step At? 1/2.

If a mass element has rotated in the x-y plane by angle w

n+l/2 ntl

during the time interval At =t - t%, the stresses must be recalculated so

that they will be referred to the x-y coordinate system in their new position.
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The following transformation equations can be obtained from Ref. 2,

'o= sn cos2 w+ sn sin2 w + ZTn sin w cos w
XX XX vy xy
(i) s' =s" sin2 w+ s” cos2 w-2T" sin w cos w
Yy XX vy xy
T! = ™ [cos2 w - sin2 w] - [Sn . ] cos w sin w .
Xy X XX vy

The angle w is given by:

LA LA [ay ox\ A .
" Vx(x1-y_])—<ax-ay>k——251nw
ii
sin o AT (3 0)

2 ox 0y

Equations (i) can be rewritten as:

e srl + s st - s
st = 2X VY 4 XX VY cos 2w+ TO  sin 2w
XX 2 2 Xy
n n n n
S « + s sXX - s n
(iii) s! == Yy YY cos 2w - T sin 2w
vy 2 2 : xy
n n
n ' Sex ~ 8
T' =T cos 2w - XX VY sin 2w .
L XY Xy 2

In the incremental stress-strain relations:

(iv) ntl _ B 4 oople ~—!———Avn+l/2 etc
v Sxx | Txx Me&x " 37V ’ ©?

the stresses s, s.., and T must be replaced by s! _, s!' , and T! . In
xx’ Tyy xy xx’ "yy Xy

order to preserve the form of Eq. (iv), it is convenient to introduce an

additive term, 6, to the stresses such that

+1/2
ntl _ n 1 avl® n
Sex  Sxx t2p [Exx - ?'V—] + 6xx’ etc.

1 st L™
8% =t -0 = <——}—{£—2———ﬂ>(c05 2w - 1) + Tiy sin 2w

XX XX XX
8 =s' - g™ =18"
yy Yy VY
(v)
s n - s n
% =71t - 1" = T® (cos 20 - 1) - |2V ) sin 2w
bq's Xy Xy Xy 2

sin 2w = 2 sin w = _31 - 2}—{ Atn+l/2.
o9x 9y
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7. Yield calculations

(a) Principal stresses (Ref. 5, p. 94)

ntl n+l
@ entl o e TSy +l[ ntl n+1>2 <2Tn+1>z]1/2
! 1 2 2 xy
ntl n+tl
(ii) Sn+l - ®xx ts y_ lKn+l _ n+l>2 < n+1 ]1/2
2 2 2
R LY
111 53 ee

(In the plane x-y
a principal stress.)
(b) Von Mises yield condition

calculate
. ntl _ n+1N\2 n+1\2 n+1\2
@ 23 [(“’1)+<Sz>+<“°’3)]

[<Sn+l 2, (Sn-H 2 +<n+l 2} . 2<T 1)2
XX YV

Gi) 201 C o/ (x9)% = kL
+ +

If Kn+l >0 then multiply each of the stresses st ! , s l, sn+]
XX vy 60

time step.
8. Boundary conditions

(a) Fixed boundary on the x axis

, and T°'!
xy

2/3 YO /\/ 2Jn+l If Kn+] < 0 use the stresses as they are for the next

and cylindrical coordinate systems used here 550 is already

by

Phantom zones are created by a mirror reflection across the

boundary as shown in the figure.

A

y

i, k| II B x
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The point j, k can now be accelerated with the equation of motion for

a general point [Egs. (3)] subject to the following conditions:

(i) n _ n
e (o
n

Mo Mo

The above procedure gives the desired acceleration along the boundary,
but is has the undesirable feature of not allowing for the situation when the
point j,k is on a free surface since the point has the extra mass of the
reflected zones associated with it. It is more convenient to have the correct
mass associated with each point, determined once and for all when the
problem grid is generated, and use different, acceleration routines for the
case when the boundary is fixed. Therefore, referring to the figure above,

we will calculate ¢. K &8¢

(R

The acceleration equation for point j,k that gives the same results as

(S

N

Gi) ¢y *

the equations of motion for a general point with conditions (i) becomes:

(i) (de/de)y po= - '2‘¢“lx§“ {[%D@‘ Zéi;)}@ {Y?I - Y?II}
j.k

- <T2y © [Xinl - S?II] - @:y @ [X?H ) X?V]} '
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(b) Fixed boundary on the y axis
y
I
p—
© [0
V- - —f2 I
I ® @
Lo -
P X

( xj,k =0
o™ ) o
(Z;Y>@: (Z;Y) D
o () 0
04 (o (5 o
(o= () 0
i) o )@
Mo=Mo
~ Mo Ve

Similar to paragraph (a) above, the effect of a reflection about the y

axis, subject to the conditions (i), is obtained using the following equations

for the acceleration of point j,k:

n __1_. 0 ,n/ 0 ,n/n
(¢j,k"4[(p A /V)®+(P A /V)@]

R
LBk
N

n

%{[@;y s o o [, - o) ) @} |

(i) [ay/at] o= 1/ 2¢§1,k {[@ﬁy@'@?y @] [X?I i X?II] i (I‘?cy @E’?I i YII;I]

@bt -l e
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(c) Corner zone on the x axis

A
y
LI Free surface
@ |«
IV ik %
I —
NG
L _J
I Fixed boundary
(.
Vik © 0
CAPSECARSE
Zn = ZZI_’J.
(i) ¢ <XX>© < x5 @
n _ n
o™ (e
n _ [ B
<TXY>®" (Txy)@_
g M®= M@

.. ! 0 ,n/m
(i1) ¢J’k—Z[P A/V>®}

. _ 1 n n n n
(iii)  (ak/dt); 4 = - 20" {(Zxx)@) <Y111 - Y?v) - <Txy>® <"m - xIV) } :
2

sk

(d) Corner zone on the y axis

y Free surface
&
) w?
ivr— — II

® | ®
he—

I

4, X
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(&3 = 0
(Z;Y>®= (ZI;Y)@
- Fjo” o=
| Bl i
é&)@z (‘v‘ge>®: 0
é2y> ® - <T2Y> @
o (o=
C Mg= Mg
¢;1,k :211_ [po An/vn>@'§

. 1 _ ) . 1 n
(iii) (dy/dt)j,k = n {Eiy)c@ (x? - X?I> - (I‘zy)él (y? - Y?I)J + ﬁj,k
J

(e) Free surfaces

For a free surface at j,k in the figure below, all quantities associated
with the phantom zones (1) and (4) are taken as zero. The equations of
motion for a general point can then be used, except that 0,31 K and ﬁ? Kk are

calculated as shown below.

y A Iv I1I Free surface
) /‘{@
j.k
. ©) @
I
—p X
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B €090 5 €70
ﬁ?,k = -é— {[ (An/ MJ o Kz;‘y - EEe) (A% M)J @} .

For a corner free surface, the phantom zones in the figures are zones

(1), (2), and (4). Free surface
@/ Q@

A Iv i,k

® @

AN

y

Free surface

n _ {0 n
R /M)@
Bix ™ szy - Eee) (A /Mﬂ@ :

9. Sliding interfaces

When two materials slide on one another, a decoupling of grid points on
the interface must be provided, otherwise large grid deformations will result.
If all of the forces on the interface are taken into account, the equations of
motion become excessively complicated. For a large class of problems a
simple decoupling of the grid points gives very satisfactory results. The
method adapted here considers one surface to be a fixed boundary during a
given time step At. The equations of motion for the sliding material are the
same as those given for motion along a fixed boundary. The fixed boundary
is then advanced in time using the force field of the sliding material next to
it. The new position of the fixed boundary provides a new boundary for the
sliding material. The important point in this type of calculation is that the
parameters on the interface of the sliding material be associated only with
the sliding material and that the material providing the fixed boundary be

treated as though the boundary were an exterior surface with pressure forces

acting on it.
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The point is that no forces should be defined at the sliding interface by

an averaging process that uses information from either side of the interface.

Referring to the figure above:
(1) Point f is advanced along (ks)n as though (ks)n were a fixed
surface. The mass of point f is associated with the mass of the
material below ks.
(2) Points a, b, etc., on (ks)n are advaaced from time (n) to time
(n+ 1).
These points are associated with the mass of the grid above ks.
The line (ks)n is considered a grid boundary for the material above
and accelerated by forces from the grid below.
)n

(3) Points on (ks - 1) are advanced in the usual manner.

(4) The point f*7! if found from the line through P*' ! and point *f.
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Calculations for a sliding interface
k = slide line

(a) To calculate the volumes of k - 1/2 mass points

1. Given the point P on k - 1 and the slope, m_, of a line through P;

p
we want to find the points a and b on k that lie to either side of this line
(see figure ). Once these points are found, the intersection f of a line
through points a, b, and the line through P can be determined.

For each point j, k calculate:
tan 8)., = (m_ - m, 1+ m_ - .
( i = g J»k)/( R Y
where:
My = Uy - Yp)/(xj,k - X

X , and m are given.
( o yp) p g

4
. S _
(i) If mp 107, (tan O)j,k l/mj,k

.. 4 —
(ii) If 1'r1j > 107, (tan e)j,k ~—1/mp

(iii) 1f |m | > 10* and 'm >10%, (tan 0); 1 = O

j.k
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Test the consecutive values of (tan G)j K until a change in sign is found.
. v
The points (Xj, K’ Yj,k) and (xj+l, K’ j+l,k) where this occurs will be the
points (xa, Ya) and (xb, yb). (This method fails if ‘6'2 90°. However, in
practice information on neighboring points is carried from cycle to cycle and

these points are tested first. If these fail, points adjoining on either side are

alternately tested. For the original search, the whole k line is tested for a

change in sign of arctan 0.)

2. To find the coordinates of point f on line ab:

X = (ya - yp + mp -m g Xa)/(mp - mab)
Vg :{mp [Ya T Map (xa ) Xp)] T Map Yp}/(mab ) mp)

Mab ~ (ya - yb)/(xa B Xb)'

3. Repeat steps 1 and 2 for point G onk - 1
4. To calculate the volume enclosed by P, f, b, f', and G (see figure).

k
k = slide line
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Al = area of Al, etc.

i J k
2A) =[x, - %, Y ~ Vp 0 = Oy = 2 -y ) - by -y )0 - x)
* 7 %p i Yp 0 i
i j k
28, = | ¥q - X, Ve Vg 0 = (g = 2 )Myy = yp) - by -y )0g - %))
*» " %p o " Yp 0
i j k
2A, = | XG - X, G~ Yp 0 =g mx )y -y ) - g v R - %))
Xer = Xp Yer © Yp 0

0

l{p
= = [ & +oy.+ A ]
Vp+1/z 3(M)p+1/2 [(Yp Y Yb) l+(y]_:)+yb+yf,)A2+(yp+yf.+yG)A3]

5. To calculate the coordinates of the center of a zone
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+ x + x +

1
xj+1/2,k-1/2’Z(Xj,k-1 £,k Tfk Xj+1,k-1)

1
20501 T ek T Y T Ve, k1)

Yi+1/2,k-1/2

(Note: This is not in general the center of a zone, but is suitable for

the use that is to be made of it.)

(b) To advance in time point { on the slide line k

k
k = slide line
k-1
B
Gn . 11
£ P+q)3 YJ’k_l>+\P+q)4 (Y_]yk—l 'Yg) ° COS_?._}._)
P R
(P +a)y (xg =%y ) (Pra), (5 - %) *sinab
vy oY 1"
sin ab = }23 = =
J(xb-xa) g, -yl |
-
- x n
cos ab = _—_fb? a >
J(xb - x )Ty -t yy) ]
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n
5. gnt1/2 _on-1/2 A oL oo
{ j k-1 n f -
2¢
f
ot .n- 20
i V2 gn kl/? - 25 (Gp - cos ab)”
J 2¢f
n_ 1 (pOA.n o0 A
¢r =3 ¥ '
£ 4 \yn Ve
©) @

Here Aéis the area of zone ) at time n, etc.
Note: The point f at time n-1/2 has been given the velocity of point
(j,k-1), also no account is taken of the fact that { may move to

a new line segment during a time step.

3. 0 ).{n+l/2 Atn+]/2
f f {
n+] n . n+l/2 nt+1l/2
yf = yf + Yf / At / .

{c) To advance in time the point j,k on slide line k

k+1
i 2 1

Yy X
o % k = slide line
. jtl,k
m, b [i>k k
Xr o
d 7 Xs k-1/2
m e
rs
P k-1

|
G
P

X - center of a zone (see a-5)
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1. Given the point 2 in the above figure and the slope m), of a line

through point 2 and I to the face ab. We want to find the points r and s
on k - 1/2 that lie to both sides of this line.

For each point (j + 1/2), (k - 1/2) calculate:

(6an 0)511 /2, 1c-1/2 = (g = 50175 11 0)/(1 + my Pi41/2,k-1/2)

Mi11/2,k-1/2 (Yj+1/z,k-1/z - Vz’/‘xj+ 1/2,k-1/2 ~ ¥2)
my, = - (Xa B Xb)/ (Ya

(i) I ]m > 104, (tan 9)

+1/2,k-1/2 +1/2,k-1/2 " ‘l/mz

. S I _ ’
(ii) I ‘mz’ >’10 o (a0 0)syy /5 ko1/2 = ”l/mj+1/z,k-1/z

(iii) If lmz

5 5 -
>10° and lmj+l/2,k—1/2 7107 (tan 0)5, /5 10015 =0

Test consecutive values of (tan §) i+1/2,k-1/2 until a change in sign is

YJ+1/2. k- 1/2 will be the pomts (s Yr) and (xg, vg) (see detalls in Part I),

2. Calculate the point of intersection (xg yd) of the line through

Point 2 and the line through points (x4, yr) and (xg, yg)

o]
1l

d (m X wm2X2+y2-y)/(m —mz)

Yq = { [Y i Xz)] i mrsyZ}/(mZ - my)
rs (YI' - yS)/(X]:‘ - XS)

If

m

1

-4 S
> = =
m <10 7, and 107, X4 =%, and Vg = Ve

rs

m,

3. Calculate the pressure at point d

+Ps]d—r,/’r—s

_ 2 2 '
= J(Xd - x )7+ (yq - ys) , etc.

Pd=Pr d - s

d-s
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4. Repeat 1 through 3 to get Pe
5. Advance point (j, k)

n/in n ~
. P <J+1 k" Yj k+> < K+ ‘Yj-l,k>

.n- 1/2 At
+Pd<yjlk i) * <_]k oy k) _

J’k 3.k
Pn Xn _n ™
N 1 55+1,k ~ J k+1 J k+1 ~ %5-1,k
n+1/2_.,n-1/z_ At >

V.
Jk Jok 2¢n nf n n n/n n
jsk dej-l,k_Xj,k>+Pe<Xj,k—Xj+],k> )

(d) The rest of the grid is advanced with the normal equations. The

N

2¢j’k

slope m, of Section I is found from (xf,yf) of Section II and the advanced
position of point P. We are now ready to repeat steps (a) through (b). The
original slope mp is obtained by bisecting the angle made by point P and its
neighboring points on line (kS - 1).

(e) Discussion:

From the above procedure it is seen that the sliding material is made
to follow the motion of the slide line boundary. An error in time and position
is introduced since, even though mass is conserved, one-half the mass of
the sliding material is not used in the calculation of the acceleration in the
direction of the boundary motion. This error is reduced when the sliding
material has a smaller density than the material associated with the boundary
or when small grid zones are used. For reasonable zoning, the error only
shows up after large displacements have taken place. The error can be
effectively remedied by increasing the mass in the boundary material to

compensate for the one-half mass in the sliding material that has been

neglected in the acceleration equations.
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10. High-explosive burn options

The chemical energy to be released through the hydrodynamic equation
of state is stored in each high-explosive zone as an initial energy E~. The
time for the detonation front to reach a specific zone is calculated in advance
from the known detonation velocity, D, and the distance from the point of
detonation to the center of the zone. This quantity is also stored with each
zone. A Burn fraction, F, is calculated so as to spread the burn front over
several zones analogous to the artificial viscosity 'q" that spreads a shock
over several zones. The burn fraction is integrated with the energy equation
and thé explicit form shown in Section 5 for calculating the energy cannot be
used. Instéad, the energy must be calculated by an iteration procedure.

The procedure given below can also be used to replace the calculation shown
-in Section 5 when a more complicated equations of state is required.

For one-dimensional calculations the burn fraction can be defined as

F = (I-V)/(VCJ) (Ref. 11) and the burn calculation is started by setting
= 1 in the zone that corresponds to the point of detonation. The burn

F
calculation will proceed to around three or four times the number of zones
that the artificial viscosity ''q'' is spread over before the detonation front is
correctly established. For one-dimensional calculations this amounts to
about 16 zones. In two-dimensional calculations where there is a limit to
the number of zones for a practical problem, it is usually necessary to have
the correct detonation velocity established in a fewer number of zones. A
convenient way to do this is to start the burn calculation at the time the
detonation would reach a given zone as described above. To allow for the
possibility of an overdriven detonation that may arise during the calculation
and result in a higher than normal detonation velocity, the burn fraction

F = (]-V)/(I—VCJ) can be used in addition to the burn fraction that is based

on the known detonation velocity. The larger of the two is then selected for

the calculation.
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(i) Burn fraction = F?-H = (tn_I-1 - tb)/AL AL = rAx/D
For tn+1 < tb: F1i1+] -0 t = actual time
] at tb = time for a zone to
Fy  =(1-v )/(l—VCJ) start burning
F*1 - aximum of F2TY ang FOY! Ax = grid spacing
1 2 _ . .
ntl nt1 D = detonation velocity
It F >1 set F =1 r = constant = 2.5
V.. = Chapman-Jouguet
CJ .
relative volume
(ii) En-H R (Pn + qn+l/2) . (Vn-rl _ Vn)'
(ii1) §n+1 - P('En+l,vn+l) . Fn+1’

here P(E,V) is the equation of state of the burned explosive.

(iv) E1"1+l _ En+] ) ]/2('15n+1 _ Pn) . (Vn+l _ Vn).

n+1,Vn+1) . F

n+1

(v) P - P(E nt1 .

11. Stability
The At calculation is the same as that given for the one-dimensional

problem in Appendix A. The characteristic zone thickness is taken to be the

zone area divided by the longest diagonal.

12. Plane geometry

For plane geometry in x-y space, the mass calculation corresponding

to Eq. (la) at the beginning of the appendix becomes:
0 0 0
M®— P /V0 (A + AL
The conservation of mass Eq. (2) becomes:
n_{0 n n
In the equations of motion [Eq. (3)] the terms a and § are set to zero.
The quantity q>j K is seen to be a constant and is calculated only once for each

point j,k. The logic for the value of ¢. K at grid boundaries is the same as

for the cylindrical case where [pO(A'E + Ag)/Vn]G): M® , etc.

The term éee in the equation of state section is set to zero.
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